Haim Dubossarsky
Haim Dubossarsky
Research Fellow, University of Cambridge
Verified email at cam.ac.uk
Title
Cited by
Cited by
Year
Outta control: Laws of semantic change and inherent biases in word representation models
H Dubossarsky, D Weinshall, E Grossman
Proceedings of the 2017 conference on empirical methods in natural language …, 2017
1172017
Semeval-2020 task 1: Unsupervised lexical semantic change detection
D Schlechtweg, B McGillivray, S Hengchen, H Dubossarsky, ...
arXiv preprint arXiv:2007.11464, 2020
972020
Time-out: Temporal referencing for robust modeling of lexical semantic change
H Dubossarsky, S Hengchen, N Tahmasebi, D Schlechtweg
arXiv preprint arXiv:1906.01688, 2019
652019
A bottom up approach to category mapping and meaning change.
H Dubossarsky, Y Tsvetkov, C Dyer, E Grossman
NetWordS, 66-70, 2015
512015
Quantifying the structure of free association networks across the life span.
H Dubossarsky, S De Deyne, TT Hills
Developmental psychology 53 (8), 1560, 2017
472017
Verbs change more than nouns: a bottom-up computational approach to semantic change
H Dubossarsky, D Weinshall, E Grossman
Lingue e linguaggio 15 (1), 7-28, 2016
252016
Coming to your senses: on controls and evaluation sets in polysemy research
H Dubossarsky, E Grossman, D Weinshall
Proceedings of the 2018 Conference on Empirical Methods in Natural Language …, 2018
152018
Avoiding the hypothesis-only bias in natural language inference via ensemble adversarial training
J Stacey, P Minervini, H Dubossarsky, S Riedel, T Rocktäschel
arXiv preprint arXiv:2004.07790, 2020
72020
The secret is in the spectra: Predicting cross-lingual task performance with spectral similarity measures
H Dubossarsky, I Vulić, R Reichart, A Korhonen
arXiv preprint arXiv:2001.11136, 2020
7*2020
Semantic change at large: A computational approach for semantic change research
H Dubossarsky
Ph. D. thesis, Hebrew University of Jerusalem, Edmond and Lily Safra Center …, 2018
72018
Challenges for computational lexical semantic change
S Hengchen, N Tahmasebi, D Schlechtweg, H Dubossarsky
arXiv preprint arXiv:2101.07668, 2021
62021
There is strength in numbers: Avoiding the hypothesis-only bias in natural language inference via ensemble adversarial training
J Stacey, P Minervini, H Dubossarsky, S Riedel, T Rocktäschel
arXiv e-prints, arXiv: 2004.07790, 2020
42020
DWUG: A large Resource of Diachronic Word Usage Graphs in Four Languages
D Schlechtweg, N Tahmasebi, S Hengchen, H Dubossarsky, ...
arXiv preprint arXiv:2104.08540, 2021
32021
Proceedings of the 2nd International Workshop on Computational Approaches to Historical Language Change 2021
N Tahmasebi, A Jatowt, Y Xu, S Hengchen, S Montariol, H Dubossarsky
Proceedings of the 2nd International Workshop on Computational Approaches to …, 2021
2021
Proceedings of the Second Workshop on Computational Research in Linguistic Typology
E Vylomova, EM Ponti, E Grossman, AD McCarthy, Y Berzak, ...
Proceedings of the Second Workshop on Computational Research in Linguistic …, 2020
2020
Time for change: Evaluating models of semantic change without evaluation tasks
H Dubossarsky, S Hengchen, N Tahmasebi, D Schlechtweg
Cambridge Language Sciences Annual Symposium 2019: Perspectives on Language …, 2019
2019
The system can't perform the operation now. Try again later.
Articles 1–16