Evangelos Georganas
Evangelos Georganas
Intel Labs, Parallel Computing Lab
Verified email at intel.com - Homepage
Cited by
Cited by
A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome
JA Chapman, M Mascher, A Buluç, K Barry, E Georganas, A Session, ...
Genome biology 16 (1), 26, 2015
Parallel de bruijn graph construction and traversal for de novo genome assembly
E Georganas, A Buluç, J Chapman, L Oliker, D Rokhsar, K Yelick
SC'14: Proceedings of the International Conference for High Performance …, 2014
Mixed precision training of convolutional neural networks using integer operations
D Das, N Mellempudi, D Mudigere, D Kalamkar, S Avancha, K Banerjee, ...
arXiv preprint arXiv:1802.00930, 2018
HipMer: An extreme-scale de novo genome assembler
E Georganas, A Buluç, J Chapman, S Hofmeyr, C Aluru, R Egan, L Oliker, ...
International Conference for High Performance Computing, Networking, Storage …, 2015
merAligner: A Fully Parallel Sequence Aligner
E Georganas, A Buluc, J Chapman, L Oliker, D Rokhsar, K Yelick
Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE …, 2015
A study of bfloat16 for deep learning training
D Kalamkar, D Mudigere, N Mellempudi, D Das, K Banerjee, S Avancha, ...
arXiv preprint arXiv:1905.12322, 2019
Anatomy of high-performance deep learning convolutions on SIMD architectures
E Georganas, S Avancha, K Banerjee, D Kalamkar, G Henry, H Pabst, ...
SC '18 Proceedings of the International Conference for High Performance …, 0
A communication-optimal n-body algorithm for direct interactions
M Driscoll, E Georganas, P Koanantakool, E Solomonik, K Yelick
2013 IEEE 27th International Symposium on Parallel and Distributed …, 2013
Communication avoiding and overlapping for numerical linear algebra
E Georganas, J González-Domínguez, E Solomonik, Y Zheng, J Tourino, ...
SC'12: Proceedings of the International Conference on High Performance …, 2012
Extreme scale de novo metagenome assembly
E Georganas, R Egan, S Hofmeyr, E Goltsman, B Arndt, A Tritt, A Buluc, ...
SC '18 Proceedings of the International Conference for High Performance …, 0
Scalable parallel algorithms for genome analysis
E Georganas
UC Berkeley, 2016
Scalable multimedia content analysis on parallel platforms using python
E Gonina, G Friedland, E Battenberg, P Koanantakool, M Driscoll, ...
ACM Transactions on Multimedia Computing, Communications, and Applications …, 2014
Optimizing deep learning rnn topologies on intel architecture
K Banerjee, E Georganas, DD Kalamkar, B Ziv, E Segal, C Anderson, ...
Supercomputing Frontiers and Innovations 6 (3), 64-85, 2019
Extreme-Scale De Novo Genome Assembly
E Georganas, S Hofmeyr, L Oliker, R Egan, D Rokhsar, A Buluc, K Yelick
Exascale Scientific Applications: Scalability and Performance Portability, 409, 2017
Performance characterization of de novo genome assembly on leading parallel systems
M Ellis, E Georganas, R Egan, S Hofmeyr, A Buluç, B Cook, L Oliker, ...
European Conference on Parallel Processing, 79-91, 2017
A new parallel research kernel to expand research on dynamic load-balancing capabilities
RF Van der Wijngaart, E Georganas, TG Mattson, A Wissink
International supercomputing conference, 256-274, 2017
Design and implementation of a parallel research kernel for assessing dynamic load-balancing capabilities
E Georganas, RF Van der Wijngaart, TG Mattson
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS …, 2016
Merbench: Pgas benchmarks for high performance genome assembly
E Georganas, M Ellis, R Egan, S Hofmeyr, A Buluç, B Cook, L Oliker, ...
Proceedings of the Second Annual PGAS Applications Workshop, 1-4, 2017
Training google neural machine translation on an intel cpu cluster
DD Kalamkar, K Banerjee, S Srinivasan, S Sridharan, E Georganas, ...
2019 IEEE International Conference on Cluster Computing (CLUSTER), 1-10, 2019
High-Performance Deep Learning via a Single Building Block
E Georganas, K Banerjee, D Kalamkar, S Avancha, A Venkat, ...
arXiv preprint arXiv:1906.06440, 2019
The system can't perform the operation now. Try again later.
Articles 1–20