Practical bayesian optimization of machine learning algorithms J Snoek, H Larochelle, RP Adams arXiv preprint arXiv:1206.2944, 2012 | 4440 | 2012 |
Scalable bayesian optimization using deep neural networks J Snoek, O Rippel, K Swersky, R Kiros, N Satish, N Sundaram, M Patwary, ... International conference on machine learning, 2171-2180, 2015 | 589 | 2015 |
Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks DR Kelley, J Snoek, JL Rinn Genome research 26 (7), 990-999, 2016 | 544 | 2016 |
Multi-task bayesian optimization K Swersky, J Snoek, RP Adams Curran Associates, Inc., 2013 | 472 | 2013 |
Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift Y Ovadia, E Fertig, J Ren, Z Nado, D Sculley, S Nowozin, JV Dillon, ... arXiv preprint arXiv:1906.02530, 2019 | 264 | 2019 |
Towards an empirical foundation for assessing bayesian optimization of hyperparameters K Eggensperger, M Feurer, F Hutter, J Bergstra, J Snoek, H Hoos, ... NIPS workshop on Bayesian Optimization in Theory and Practice 10, 3, 2013 | 251 | 2013 |
Bayesian optimization with unknown constraints MA Gelbart, J Snoek, RP Adams arXiv preprint arXiv:1403.5607, 2014 | 248 | 2014 |
Spectral representations for convolutional neural networks O Rippel, J Snoek, RP Adams arXiv preprint arXiv:1506.03767, 2015 | 212 | 2015 |
Input warping for bayesian optimization of non-stationary functions J Snoek, K Swersky, R Zemel, R Adams International Conference on Machine Learning, 1674-1682, 2014 | 170 | 2014 |
Freeze-thaw bayesian optimization K Swersky, J Snoek, RP Adams arXiv preprint arXiv:1406.3896, 2014 | 170 | 2014 |
Deep bayesian bandits showdown: An empirical comparison of bayesian deep networks for thompson sampling C Riquelme, G Tucker, J Snoek arXiv preprint arXiv:1802.09127, 2018 | 134 | 2018 |
Sequential regulatory activity prediction across chromosomes with convolutional neural networks DR Kelley, YA Reshef, M Bileschi, D Belanger, CY McLean, J Snoek Genome research 28 (5), 739-750, 2018 | 112 | 2018 |
Likelihood ratios for out-of-distribution detection J Ren, PJ Liu, E Fertig, J Snoek, R Poplin, MA DePristo, JV Dillon, ... arXiv preprint arXiv:1906.02845, 2019 | 103 | 2019 |
Winner's curse? On pace, progress, and empirical rigor D Sculley, J Snoek, A Wiltschko, A Rahimi | 88 | 2018 |
Automated detection of unusual events on stairs J Snoek, J Hoey, L Stewart, RS Zemel, A Mihailidis Image and Vision Computing 27 (1-2), 153-166, 2009 | 82 | 2009 |
Learning latent permutations with gumbel-sinkhorn networks G Mena, D Belanger, S Linderman, J Snoek arXiv preprint arXiv:1802.08665, 2018 | 77 | 2018 |
Towards a single sensor passive solution for automated fall detection M Belshaw, B Taati, J Snoek, A Mihailidis 2011 Annual International Conference of the IEEE Engineering in Medicine and …, 2011 | 62 | 2011 |
Raiders of the lost architecture: Kernels for Bayesian optimization in conditional parameter spaces K Swersky, D Duvenaud, J Snoek, F Hutter, MA Osborne arXiv preprint arXiv:1409.4011, 2014 | 59 | 2014 |
Machine learning approaches in cardiovascular imaging M Henglin, G Stein, PV Hushcha, J Snoek, AB Wiltschko, S Cheng Circulation: Cardiovascular Imaging 10 (10), e005614, 2017 | 57 | 2017 |
Nonparametric guidance of autoencoder representations using label information J Snoek, RP Adams, H Larochelle Journal of Machine Learning Research, 2012 | 57 | 2012 |