Follow
Mojtaba Jafaritadi
Mojtaba Jafaritadi
Research Fellow (Stanford University)
Verified email at stanford.edu - Homepage
Title
Cited by
Cited by
Year
Gyrocardiography: A new non-invasive monitoring method for the assessment of cardiac mechanics and the estimation of hemodynamic variables
M Jafari Tadi, E Lehtonen, A Saraste, J Tuominen, J Koskinen, M Teräs, ...
Scientific reports 7 (1), 6823, 2017
1692017
Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation
M Kaisti, T Panula, J Leppänen, R Punkkinen, M Jafari Tadi, T Vasankari, ...
NPJ digital medicine 2 (1), 39, 2019
1452019
A real-time approach for heart rate monitoring using a Hilbert transform in seismocardiograms
MJ Tadi, E Lehtonen, T Hurnanen, J Koskinen, J Eriksson, M Pänkäälä, ...
Physiological measurement 37 (11), 1885, 2016
1072016
Accelerometer‐Based Method for Extracting Respiratory and Cardiac Gating Information for Dual Gating during Nuclear Medicine Imaging
M Jafari Tadi, T Koivisto, M Pänkäälä, A Paasio
International journal of biomedical imaging 2014 (1), 690124, 2014
962014
Automated detection of atrial fibrillation based on time–frequency analysis of seismocardiograms
T Hurnanen, E Lehtonen, MJ Tadi, T Kuusela, T Kiviniemi, A Saraste, ...
IEEE journal of biomedical and health informatics 21 (5), 1233-1241, 2016
902016
Seismocardiography: Toward heart rate variability (HRV) estimation
MJ Tadi, E Lehtonen, T Koivisto, M Pänkäälä, A Paasio, M Teräs
2015 IEEE International Symposium on Medical Measurements and Applications …, 2015
562015
Multiclass classifier based cardiovascular condition detection using smartphone mechanocardiography
Z Iftikhar, O Lahdenoja, M Jafari Tadi, T Hurnanen, T Vasankari, ...
Scientific reports 8 (1), 9344, 2018
552018
Gyrocardiography: A new non-invasive approach in the study of mechanical motions of the heart. Concept, method and initial observations
MJ Tadi, E Lehtonen, M Pankäälä, A Saraste, T Vasankari, M Terás, ...
2016 38th Annual International Conference of the IEEE engineering in …, 2016
512016
Stand-alone heartbeat detection in multidimensional mechanocardiograms
M Kaisti, MJ Tadi, O Lahdenoja, T Hurnanen, A Saraste, M Pänkäälä, ...
IEEE Sensors Journal 19 (1), 234-242, 2018
482018
Heart rate variability estimation with joint accelerometer and gyroscope sensing
O Lahdenoja, T Humanen, MJ Tadi, M Pänkäälä, T Koivisto
2016 Computing in Cardiology Conference (CinC), 717-720, 2016
312016
A new algorithm for segmentation of cardiac quiescent phases and cardiac time intervals using seismocardiography
MJ Tadi, T Koivisto, M Pänkäälä, A Paasio, T Knuutila, M Teräs, ...
Sixth International Conference on Graphic and Image Processing (ICGIP 2014 …, 2015
302015
Biomedical image analysis competitions: The state of current participation practice
M Eisenmann, A Reinke, V Weru, MD Tizabi, F Isensee, TJ Adler, ...
arXiv preprint arXiv:2212.08568, 2022
292022
Classification of atrial fibrillation and acute decompensated heart failure using smartphone Mechanocardiography: a multilabel learning approach
S Mehrang, O Lahdenoja, M Kaisti, MJ Tadi, T Hurnanen, A Airola, ...
IEEE Sensors Journal 20 (14), 7957-7968, 2020
282020
Comprehensive analysis of cardiogenic vibrations for automated detection of atrial fibrillation using smartphone mechanocardiograms
MJ Tadi, S Mehrang, M Kaisti, O Lahdenoja, T Hurnanen, J Jaakkola, ...
IEEE Sensors Journal 19 (6), 2230-2242, 2018
282018
A smartphone-only solution for detecting indications of acute myocardial infarction
O Lahdenoja, T Koivisto, MJ Tadi, Z Iftikhar, T Hurnanen, T Vasankari, ...
2017 IEEE EMBS International Conference on Biomedical & Health Informatics …, 2017
222017
Adaptive weight aggregation in federated learning for brain tumor segmentation
MI Khan, M Jafaritadi, E Alhoniemi, E Kontio, SA Khan
International MICCAI Brainlesion Workshop, 455-469, 2021
182021
A miniaturized low power biomedical sensor node for clinical research and long term monitoring of cardiovascular signals
J Tuominen, E Lehtonen, MJ Tadi, J Koskinen, M Pänkäälä, T Koivisto
2017 IEEE international symposium on circuits and systems (ISCAS), 1-4, 2017
182017
Machine learning based classification of myocardial infarction conditions using smartphone-derived seismo-and gyrocardiography
S Mehrang, MJ Tadi, M Kaisti, O Lahdenoja, T Vasankari, T Kiviniemi, ...
2018 Computing in Cardiology Conference (CinC) 45, 1-4, 2018
162018
Investigating the estimation of cardiac time intervals using gyrocardiography
P Dehkordi, K Tavakolian, MJ Tadi, V Zakeri, F Khosrow-Khavar
Physiological Measurement 41 (5), 055004, 2020
142020
Deep learning accurately classifies elbow joint effusion in adult and pediatric radiographs
JT Huhtanen, M Nyman, D Doncenco, M Hamedian, D Kawalya, ...
Scientific Reports 12 (1), 11803, 2022
132022
The system can't perform the operation now. Try again later.
Articles 1–20