Seuraa
CHIYU MAX JIANG
CHIYU MAX JIANG
Waymo LLC
Vahvistettu sähköpostiosoite verkkotunnuksessa waymo.com - Kotisivu
Nimike
Viittaukset
Viittaukset
Vuosi
Local implicit grid representations for 3d scenes
C Jiang, A Sud, A Makadia, J Huang, M Nießner, T Funkhouser
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
2122020
Spherical CNNs on Unstructured Grids
C Jiang, J Huang, K Kashinath, P Marcus, M Nießner
International Conference on Learning Representation (2019), 2019
1112019
Physics-informed machine learning: case studies for weather and climate modelling
K Kashinath, M Mustafa, A Albert, JL Wu, C Jiang, S Esmaeilzadeh, ...
Philosophical Transactions of the Royal Society A 379 (2194), 20200093, 2021
852021
Meshfreeflownet: A physics-constrained deep continuous space-time super-resolution framework
S Esmaeilzadeh, K Azizzadenesheli, K Kashinath, M Mustafa, ...
SC20: International Conference for High Performance Computing, Networking …, 2020
402020
Shapeflow: Learnable deformation flows among 3d shapes
C Jiang, J Huang, A Tagliasacchi, LJ Guibas
Advances in Neural Information Processing Systems 33, 9745-9757, 2020
372020
Shape as points: A differentiable poisson solver
S Peng, C Jiang, Y Liao, M Niemeyer, M Pollefeys, A Geiger
Advances in Neural Information Processing Systems 34, 13032-13044, 2021
242021
Adversarial texture optimization from rgb-d scans
J Huang, J Thies, A Dai, A Kundu, C Jiang, LJ Guibas, M Nießner, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
232020
Enforcing physical constraints in cnns through differentiable pde layer
K Kashinath, P Marcus
ICLR 2020 Workshop on Integration of Deep Neural Models and Differential …, 2020
152020
Hierarchical detail enhancing mesh-based shape generation with 3d generative adversarial network
C Jiang, P Marcus
arXiv preprint arXiv:1709.07581, 2017
132017
Finding the optimal shape of the leading-and-trailing car of a high-speed train using design-by-morphing
S Oh, CH Jiang, C Jiang, PS Marcus
Computational Mechanics 62 (1), 23-45, 2018
112018
Leveraging Bayesian analysis to improve accuracy of approximate models
B Nadiga, C Jiang, D Livescu
Journal of Computational Physics 394, 280-297, 2019
102019
Convolutional Neural Networks on non-uniform geometrical signals using Euclidean spectral transformation
C Jiang, D Wang, J Huang, P Marcus, M Nießner
International Conference on Learning Representation (2019), 2019
82019
Local implicit grid representations for 3d scenes. In 2020 IEEE
C Jiang, A Sud, A Makadia, J Huang, T Funkhouser
CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2, 2020
72020
Meshode: A robust and scalable framework for mesh deformation
J Huang, CM Jiang, B Leng, B Wang, L Guibas
arXiv preprint arXiv:2005.11617, 2020
62020
Ddsl: Deep differentiable simplex layer for learning geometric signals
C Jiang, D Lansigan, P Marcus, M Nießner
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
42019
Neural Network Optimization Under Partial Differential Equation Constraints
K Kashinath, C Jiang, GE Jergensen, M Prabhat, P Marcus, ...
APS Division of Fluid Dynamics Meeting Abstracts, C17. 008, 2019
2019
Towards Leveraging Machine Learning and Other Statistical Methods To Improve Turbulence Modeling
B Nadiga, C Jiang, D Livescu
Bulletin of the American Physical Society 63, 2018
2018
Bridging simulation and deep learning-convolutional neural networks on unstructured grids
C Jiang, K Kashinath, P Marcus, M Prabhat
Bulletin of the American Physical Society 63, 2018
2018
Drag Reduction of an Airfoil Using Deep Learning
C Jiang, A Sun, P Marcus
APS Division of Fluid Dynamics Meeting Abstracts, D31. 008, 2017
2017
Shape Optimization of A Turbine-99 Draft Tube Using Design-by-Morphing
S Oh, CH Jiang, P Marcus, D Gutzwiller, A Demeulenaere, C Jiang
APS Division of Fluid Dynamics Meeting Abstracts, L4. 004, 2016
2016
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–20