Simple and scalable predictive uncertainty estimation using deep ensembles B Lakshminarayanan, A Pritzel, C Blundell Advances in Neural Information Processing Systems, 6393-6395, 2017 | 1192 | 2017 |
Clinically applicable deep learning for diagnosis and referral in retinal disease J De Fauw, JR Ledsam, B Romera-Paredes, S Nikolov, N Tomasev, ... Nature medicine 24 (9), 1342-1350, 2018 | 846 | 2018 |
Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach F Briggs, B Lakshminarayanan, L Neal, XZ Fern, R Raich, SJK Hadley, ... The Journal of the Acoustical Society of America 131 (6), 4640-4650, 2012 | 257 | 2012 |
Learning in Implicit Generative Models S Mohamed, B Lakshminarayanan arXiv preprint arXiv:1610.03483, 2016 | 252 | 2016 |
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift Y Ovadia, E Fertig, J Ren, Z Nado, D Sculley, S Nowozin, JV Dillon, ... arXiv preprint arXiv:1906.02530, 2019 | 241 | 2019 |
Do Deep Generative Models Know What They Don't Know? E Nalisnick, A Matsukawa, YW Teh, D Gorur, B Lakshminarayanan arXiv preprint arXiv:1810.09136, 2018 | 197 | 2018 |
The Cramer Distance as a Solution to Biased Wasserstein Gradients MG Bellemare, I Danihelka, W Dabney, S Mohamed, ... arXiv preprint arXiv:1705.10743, 2017 | 172 | 2017 |
Variational Approaches for Auto-Encoding Generative Adversarial Networks M Rosca, B Lakshminarayanan, D Warde-Farley, S Mohamed arXiv preprint arXiv:1706.04987, 2017 | 171 | 2017 |
Mondrian forests: Efficient online random forests B Lakshminarayanan, DM Roy, YW Teh Advances in neural information processing systems 27, 3140-3148, 2014 | 169 | 2014 |
Normalizing Flows for Probabilistic Modeling and Inference G Papamakarios, E Nalisnick, DJ Rezende, S Mohamed, ... arXiv preprint arXiv:1912.02762, 2019 | 161 | 2019 |
Many Paths to Equilibrium: GANs Do Not Need to Decrease a Divergence At Every Step W Fedus, M Rosca, B Lakshminarayanan, AM Dai, S Mohamed, ... ICLR 2018, 0 | 124* | |
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty D Hendrycks, N Mu, ED Cubuk, B Zoph, J Gilmer, B Lakshminarayanan arXiv preprint arXiv:1912.02781, 2019 | 105 | 2019 |
Likelihood ratios for out-of-distribution detection J Ren, PJ Liu, E Fertig, J Snoek, R Poplin, M Depristo, J Dillon, ... Advances in Neural Information Processing Systems, 14707-14718, 2019 | 94 | 2019 |
Robust Bayesian matrix factorisation B Lakshminarayanan, G Bouchard, C Archambeau Proc. Intl. Conf. on Artificial Intelligence and Statistics (AISTATS), 2011 | 64 | 2011 |
Distributed Bayesian Learning with Stochastic Natural Gradient Expectation Propagation and the Posterior Server L Hasenclever, S Webb, T Lienart, S Vollmer, B Lakshminarayanan, ... Journal of Machine Learning Research 18 (106), 1-37, 2017 | 56* | 2017 |
Distributed Bayesian Posterior Sampling via Moment Sharing M Xu, B Lakshminarayanan, YW Teh, J Zhu, B Zhang NIPS, 2014 | 55 | 2014 |
Comparison of Maximum Likelihood and GAN-based training of Real NVPs I Danihelka, B Lakshminarayanan, B Uria, D Wierstra, P Dayan arXiv preprint arXiv:1705.05263, 2017 | 53 | 2017 |
Distribution Matching in Variational Inference M Rosca, B Lakshminarayanan, S Mohamed arXiv preprint arXiv:1802.06847, 2018 | 52 | 2018 |
Deep Ensembles: A Loss Landscape Perspective S Fort, H Hu, B Lakshminarayanan arXiv preprint arXiv:1912.02757, 2019 | 49 | 2019 |
Robust Bayesian matrix factorization and recommender systems using same C Archambeau, G Bouchard, B Lakshminarayanan US Patent 8,880,439, 2014 | 43 | 2014 |