Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions. A Blanchet, J Dolbeault, B Perthame Electronic Journal of Differential Equations (EJDE)[electronic only] 2006 …, 2006 | 625 | 2006 |

Infinite time aggregation for the critical Patlak‐Keller‐Segel model in ℝ^{2}A Blanchet, JA Carrillo, N Masmoudi Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2008 | 323 | 2008 |

Convergence of the mass-transport steepest descent scheme for the subcritical Patlak–Keller–Segel model A Blanchet, V Calvez, JA Carrillo SIAM Journal on Numerical Analysis 46 (2), 691-721, 2008 | 235 | 2008 |

Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions A Blanchet, JA Carrillo, P Laurençot Calculus of Variations and Partial Differential Equations 35 (2), 133-168, 2009 | 218 | 2009 |

Functional inequalities, thick tails and asymptotics for the critical mass Patlak–Keller–Segel model A Blanchet, EA Carlen, JA Carrillo Journal of Functional Analysis 262 (5), 2142-2230, 2012 | 179 | 2012 |

Asymptotics of the fast diffusion equation via entropy estimates A Blanchet, M Bonforte, J Dolbeault, G Grillo, JL Vázquez Archive for Rational Mechanics and Analysis 191, 347-385, 2009 | 154 | 2009 |

How social information can improve estimation accuracy in human groups B Jayles, H Kim, R Escobedo, S Cezera, A Blanchet, T Kameda, C Sire, ... Proceedings of the National Academy of Sciences 114 (47), 12620-12625, 2017 | 131 | 2017 |

Hardy–Poincaré inequalities and applications to nonlinear diffusions A Blanchet, M Bonforte, J Dolbeault, G Grillo, JL Vázquez Comptes rendus. Mathématique 344 (7), 431-436, 2007 | 80 | 2007 |

The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in ℝ d, d≥ 3 A Blanchet, P Laurençot Communications in Partial Differential Equations 38 (4), 658-686, 2013 | 65 | 2013 |

Optimal transport and Cournot-Nash equilibria A Blanchet, G Carlier Mathematics of Operations Research 41 (1), 125-145, 2016 | 61 | 2016 |

On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher A Blanchet Séminaire Laurent Schwartz—EDP et applications, 1-26, 2011 | 52 | 2011 |

On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients A Blanchet, J Dolbeault, R Monneau Journal de mathématiques pures et appliquées 85 (3), 371-414, 2006 | 51 | 2006 |

A hybrid variational principle for the Keller–Segel system in ℝ2 A Blanchet, JA Carrillo, D Kinderlehrer, M Kowalczyk, P Laurençot, ... ESAIM: Mathematical Modelling and Numerical Analysis 49 (6), 1553-1576, 2015 | 48 | 2015 |

Asymptotic behaviour for small mass in the two-dimensional parabolic–elliptic Keller–Segel model A Blanchet, J Dolbeault, M Escobedo, J Fernández Journal of Mathematical Analysis and Applications 361 (2), 533-542, 2010 | 48 | 2010 |

From nash to cournot–nash equilibria via the monge–kantorovich problem A Blanchet, G Carlier Philosophical Transactions of the Royal Society A: Mathematical, Physical …, 2014 | 45 | 2014 |

Existence and uniqueness of equilibrium for a spatial model of social interactions A Blanchet, P Mossay, F Santambrogio International Economic Review 57 (1), 31-60, 2016 | 39 | 2016 |

On the regularity of the free boundary in the parabolic obstacle problem. Application to American options A Blanchet Nonlinear Analysis: Theory, Methods & Applications 65 (7), 1362-1378, 2006 | 32 | 2006 |

A family of functional inequalities: Łojasiewicz inequalities and displacement convex functions A Blanchet, J Bolte Journal of Functional Analysis 275 (7), 1650-1673, 2018 | 31 | 2018 |

Topological interactions in a Boltzmann-type framework A Blanchet, P Degond Journal of Statistical Physics 163, 41-60, 2016 | 31 | 2016 |

Improved intermediate asymptotics for the heat equation JP Bartier, A Blanchet, J Dolbeault, M Escobedo Applied Mathematics Letters 24 (1), 76-81, 2011 | 29 | 2011 |