Seuraa
Cosme Louart
Cosme Louart
Assistant Professor, Chinese University of Hong Kong, Shenzhen
Vahvistettu sähköpostiosoite verkkotunnuksessa cuhk.edu.cn - Kotisivu
Nimike
Viittaukset
Viittaukset
Vuosi
A random matrix approach to neural networks
C Louart, Z Liao, R Couillet
The Annals of Applied Probability 28 (2), 1190-1248, 2018
2022018
Random matrix theory proves that deep learning representations of gan-data behave as gaussian mixtures
MEA Seddik, C Louart, M Tamaazousti, R Couillet
International Conference on Machine Learning, 8573-8582, 2020
762020
Concentration of measure and large random matrices with an application to sample covariance matrices
C Louart, R Couillet
arXiv preprint arXiv:1805.08295, 2018
512018
The unexpected deterministic and universal behavior of large softmax classifiers
MEA Seddik, C Louart, R Couillet, M Tamaazousti
International Conference on Artificial Intelligence and Statistics, 1045-1053, 2021
112021
Spectral properties of sample covariance matrices arising from random matrices with independent non identically distributed columns
C Louart, R Couillet
arXiv preprint arXiv:2109.02644, 2021
82021
A concentration of measure and random matrix approach to large-dimensional robust statistics
C Louart, R Couillet
The Annals of Applied Probability 32 (6), 4737-4762, 2022
72022
A random matrix and concentration inequalities framework for neural networks analysis
C Louart, R Couillet
2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018
72018
Harnessing neural networks: A random matrix approach
C Louart, R Couillet
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
72017
Sharp bounds for the concentration of the resolvent in convex concentration settings
C Louart
arXiv preprint arXiv:2201.00284, 2022
52022
Concentration of measure and generalized product of random vectors with an application to hanson-wright-like inequalities
C Louart, R Couillet
arXiv preprint arXiv:2102.08020, 2021
52021
Concentration of solutions to random equations with concentration of measure hypotheses
C Louart, R Couillet
arXiv preprint arXiv:2010.09877, 2020
42020
Large dimensional asymptotics of multi-task learning
M Tiomoko, C Louart, R Couillet
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and …, 2020
22020
Random matrix theory proves that deep learning representations of gan-data behave as gaussian mixtures
M El Amine Seddik, C Louart, M Tamaazousti, R Couillet
arXiv e-prints, arXiv: 2001.08370, 2020
22020
Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
R Ilbert, M Tiomoko, C Louart, A Odonnat, V Feofanov, T Palpanas, ...
arXiv preprint arXiv:2406.10327, 2024
2024
Operation with concentration inequalities and Conjugate of parallel sum
C Louart
arXiv preprint arXiv:2402.08206, 2024
2024
Enhancing Multivariate Time Series Forecasting via Multi-Task Learning and Random Matrix Theory
R Ilbert, M Tiomoko, C Louart, V Feofanov, T Palpanas, I Redko
NeurIPS Workshop on Time Series in the Age of Large Models, 2024
2024
Random matrix theory and concentration of the measure theory for the study of high dimension data processing.
C Louart
Université Grenoble Alpes [2020-....], 2023
2023
Théorie des matrices aléatoires et concentration de la mesure pour l'analyse d’algorithmes de traitement de données en grande dimension.
C Louart
Université Grenoble Alpes, 2023
2023
Concentration of solutions to random equations with concentration of measure hypotheses
R Couillet, C Louart
2020
A Concentration of Measure Framework to study convex problems and other implicit formulation problems in machine learning
C Louart
arXiv preprint arXiv:2010.09877, 2020
2020
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–20