Lars Maaløe
Lars Maaløe
Co-Founder & CTO at Corti | Adj. Assoc. Professor of Machine Learning
Vahvistettu sähköpostiosoite verkkotunnuksessa corti.ai
Nimike
Viittaukset
Viittaukset
Vuosi
Ladder variational autoencoders
CK Sønderby, T Raiko, L Maaløe, SK Sønderby, O Winther
Advances in Neural Information Processing Systems, 3738-3746, 2016
4672016
Auxiliary deep generative models
L Maaløe, CK Sønderby, SK Sønderby, O Winther
Proceedings of the International Conference on Machine Learning, 2016
3472016
How to train deep variational autoencoders and probabilistic ladder networks
CK Sønderby, T Raiko, L Maaløe, SK Sønderby, O Winther
arXiv preprint arXiv:1602.02282, 2016
972016
BIVA: A very deep hierarchy of latent variables for generative modeling
L Maaløe, M Fraccaro, V Liévin, O Winther
Advances in Neural Information Processing Systems, 2019
582019
Recurrent spatial transformer networks
SK Sønderby, CK Sønderby, L Maaløe, O Winther
arXiv preprint arXiv:1509.05329, 2015
402015
Semi-supervised generation with cluster-aware generative models
L Maaløe, M Fraccaro, O Winther
NIPS Workshop on Advances in Approximate Bayesian Inference, 2017
292017
Improving semi-supervised learning with auxiliary deep generative models
L Maaløe, CK Sønderby, SK Sønderby, O Winther
NIPS Workshop on Advances in Approximate Bayesian Inference, 2015
282015
Deep belief nets for topic modeling
L Maaløe, M Arngren, O Winther
ICML workshop on Knowledge-Powered Deep Learning for Text Mining, 2015
152015
Utilizing Domain Knowledge in End-to-End Audio Processing
TMS Tax, JLD Antich, H Purwins, L Maaløe
NIPS workshop on machine learning for audio, 2017
72017
Development and implementation of a PV performance monitoring system based on inverter measurements
SV Spataru, A Gavriluta, D Sera, L Maaloe, O Winther
2016 IEEE Energy Conversion Congress and Exposition (ECCE), 1-7, 2016
62016
Towards Hierarchical Discrete Variational Autoencoders
V Liévin, A Dittadi, L Maaløe, O Winther
NeurIPS Workshop on Advances in Approximate Bayesian Inference, 2019
42019
Do end-to-end speech recognition models care about context?
L Borgholt, JD Havtorn, Ž Agić, A Søgaard, L Maaløe, C Igel
arXiv preprint arXiv:2102.09928, 2021
32021
On the Inductive Bias of Word-Character-Level Multi-Task Learning for Speech Recognition
J Kremer, L Borgholt, L Maaløe
NIPS Workshop on Interpretability and Robustness for Audio, Speech and Language, 2018
32018
CaGeM: A Cluster Aware Deep Generative Model
L Maaløe, M Fraccaro, O Winther
NIPS Workshop on Advances in Approximate Bayesian Inferences, 2017
32017
Condition Monitoring in Photovoltaic Systems by Semi-Supervised Machine Learning
L Maaløe, O Winther, S Spataru, D Sera
Energies 13 (3), 584, 2020
22020
Hierarchical VAEs Know What They Don't Know
JD Havtorn, J Frellsen, S Hauberg, L Maaløe
arXiv preprint arXiv:2102.08248, 2021
12021
On Scaling Contrastive Representations for Low-Resource Speech Recognition
L Borgholt, TMS Tax, JD Havtorn, L Maaløe, C Igel
arXiv preprint arXiv:2102.00850, 2021
2021
MultiQT: Multimodal Learning for Real-Time Question Tracking in Speech
J Drachmann Havtorn, J Latko, J Edin, L Borgholt, L Maaløe, L Belgrano, ...
Association for Computational Linguistics, 2020
2020
Deep Generative Models for Semi-Supervised Machine Learning
L Maaløe, O Winther, ON Nielsen, S Hauberg, U Paquet, R Turner
DTU Compute, 2018
2018
Exploiting Nontrivial Connectivity for Automatic Speech Recognition
M Paraschiv, L Borgholt, TMS Tax, M Singh, L Maaløe
NIPS workshop on machine learning for audio, 2017
2017
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–20