Seuraa
Philipp Krähenbühl
Philipp Krähenbühl
Vahvistettu sähköpostiosoite verkkotunnuksessa cs.utexas.edu - Kotisivu
Nimike
Viittaukset
Viittaukset
Vuosi
Context encoders: Feature learning by inpainting
D Pathak, P Krahenbuhl, J Donahue, T Darrell, AA Efros
Proceedings of the IEEE conference on computer vision and pattern …, 2016
46462016
Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
P Krähenbühl, V Koltun
NIPS, 2011
33592011
Objects as points
X Zhou, D Wang, P Krähenbühl
arXiv preprint arXiv:1904.07850, 2019
21952019
Saliency filters: Contrast based filtering for salient region detection
F Perazzi, P Krähenbühl, Y Pritch, A Hornung
2012 IEEE conference on computer vision and pattern recognition, 733-740, 2012
18602012
Adversarial feature learning
J Donahue, P Krähenbühl, T Darrell
arXiv preprint arXiv:1605.09782, 2016
17882016
Generative visual manipulation on the natural image manifold
JY Zhu, P Krähenbühl, E Shechtman, AA Efros
European conference on computer vision, 597-613, 2016
12542016
Sampling matters in deep embedding learning
CY Wu, R Manmatha, AJ Smola, P Krähenbühl
ICCV 2017, 2017
8052017
Bottom-up object detection by grouping extreme and center points
X Zhou, J Zhuo, P Krahenbuhl
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2019
7552019
Constrained convolutional neural networks for weakly supervised segmentation
D Pathak, P Krahenbuhl, T Darrell
Proceedings of the IEEE international conference on computer vision, 1796-1804, 2015
6512015
Tracking Objects as Points
X Zhou, V Koltun, P Krähenbühl
ECCV, 2020
5302020
Center-based 3d object detection and tracking
T Yin, X Zhou, P Krähenbühl
CVPR, 2021
4472021
Geodesic object proposals
P Krähenbühl, V Koltun
European conference on computer vision, 725-739, 2014
4402014
Long-term feature banks for detailed video understanding
CY Wu, C Feichtenhofer, H Fan, K He, P Krahenbuhl, R Girshick
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019
3732019
Learning dense correspondence via 3d-guided cycle consistency
T Zhou, P Krahenbuhl, M Aubry, Q Huang, AA Efros
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2016
3462016
A system for retargeting of streaming video
P Krähenbühl, M Lang, A Hornung, M Gross
ACM SIGGRAPH Asia 2009 papers, 1-10, 2009
2942009
Compressed video action recognition
CY Wu, M Zaheer, H Hu, R Manmatha, AJ Smola, P Krähenbühl
Proceedings of the IEEE conference on computer vision and pattern …, 2018
2692018
Video compression through image interpolation
CY Wu, N Singhal, P Krahenbuhl
Proceedings of the European conference on computer vision (ECCV), 416-431, 2018
2392018
Parameter learning and convergent inference for dense random fields
P Krähenbühl, V Koltun
International Conference on Machine Learning, 513-521, 2013
2362013
Learning by cheating
D Chen, B Zhou, V Koltun, P Krähenbühl
Conference on Robot Learning, 66-75, 2019
2212019
Data-dependent initializations of convolutional neural networks
P Krähenbühl, C Doersch, J Donahue, T Darrell
arXiv preprint arXiv:1511.06856, 2015
2192015
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–20