Stochastic video prediction with conditional density estimation R Shu, J Brofos, F Zhang, HH Bui, M Ghavamzadeh, M Kochenderfer ECCV Workshop on Action and Anticipation for Visual Learning 2, 2, 2016 | 30 | 2016 |
Quantitative criticism of literary relationships JP Dexter, T Katz, N Tripuraneni, T Dasgupta, A Kannan, JA Brofos, ... Proceedings of the National Academy of Sciences 114 (16), E3195-E3204, 2017 | 26 | 2017 |
Profiling of intertextuality in Latin literature using word embeddings PJ Burns, JA Brofos, K Li, P Chaudhuri, JP Dexter Proceedings of the 2021 Conference of the North American Chapter of the …, 2021 | 20 | 2021 |
Adaptation of the independent Metropolis-Hastings sampler with normalizing flow proposals J Brofos, M Gabrié, MA Brubaker, RR Lederman International Conference on Artificial Intelligence and Statistics, 5949-5986, 2022 | 9 | 2022 |
Evaluating the implicit midpoint integrator for Riemannian Hamiltonian Monte Carlo J Brofos, RR Lederman International Conference on Machine Learning, 1072-1081, 2021 | 8 | 2021 |
Non-canonical hamiltonian monte carlo JA Brofos, RR Lederman arXiv preprint arXiv:2008.08191, 2020 | 8 | 2020 |
Magnetic manifold hamiltonian monte carlo JA Brofos, RR Lederman arXiv preprint arXiv:2010.07753, 2020 | 7 | 2020 |
A bias-variance decomposition for Bayesian deep learning J Brofos, R Shu, RR Lederman NeurIPS 2019 Workshop on Bayesian Deep Learning, 2019 | 6 | 2019 |
Manifold density estimation via generalized dequantization JA Brofos, MA Brubaker, RR Lederman arXiv preprint arXiv:2102.07143, 2021 | 5 | 2021 |
Geometric ergodicity in modified variations of Riemannian manifold and Lagrangian Monte Carlo JA Brofos, V Roy, RR Lederman arXiv preprint arXiv:2301.01409, 2023 | 3 | 2023 |
On numerical considerations for riemannian manifold hamiltonian monte carlo JA Brofos, RR Lederman arXiv preprint arXiv:2111.09995, 2021 | 3 | 2021 |
Ensemble committees for stock return classification and prediction J Brofos arXiv preprint arXiv:1404.1492, 2014 | 3 | 2014 |
A note on deep variational models for unsupervised clustering R Shu, J Brofos, C Langlotz | 2 | 2017 |
A Markov chain analysis of a pattern matching coin game J Brofos arXiv preprint arXiv:1406.2212, 2014 | 2 | 2014 |
The optimistic method for model estimation J Brofos, R Shu, F Zhang Advances in Intelligent Data Analysis XV: 15th International Symposium, IDA …, 2016 | 1 | 2016 |
Optimistic and Parallel Ising Model Estimation J Brofos, R Shu | 1 | 2015 |
Automated Attribution and Intertextual Analysis J Brofos, A Kannan, R Shu arXiv preprint arXiv:1405.0616, 2014 | 1 | 2014 |
Several Remarks on the Numerical Integrator in Lagrangian Monte Carlo JA Brofos, RR Lederman arXiv preprint arXiv:2202.13888, 2022 | | 2022 |
Essays on Numerical Integration in Hamiltonian Monte Carlo JA Brofos Yale University, 2022 | | 2022 |
Parallelization of Minimum Probability Flow on Binary Markov Random Fields J Brofos, R Shu 2015 IEEE 14th International Conference on Machine Learning and Applications …, 2015 | | 2015 |