Yingzhen Li
Title
Cited by
Cited by
Year
Variational Continual Learning
CV Nguyen, Y Li, TD Bui, RE Turner
3742018
Variational Continual Learning
CV Nguyen, Y Li, TD Bui, RE Turner
arXiv preprint arXiv:1710.10628, 2017
3742017
Deep gaussian processes for regression using approximate expectation propagation
T Bui, D Hernández-Lobato, J Hernandez-Lobato, Y Li, R Turner
International Conference on Machine Learning, 1472-1481, 2016
1852016
Rényi divergence variational inference
Y Li, RE Turner
Advances in Neural Information Processing Systems, 1073-1081, 2016
1852016
Black-box α-divergence minimization
JM Hernández-Lobato, Y Li, M Rowland, D Hernández-Lobato, TD Bui, ...
International Machine Learning Society, 2016
1692016
Dropout inference in bayesian neural networks with alpha-divergences
Y Li, Y Gal
Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017
1572017
Disentangled Sequential Autoencoder
L Yingzhen, S Mandt
International Conference on Machine Learning, 5656-5665, 2018
132*2018
Stochastic expectation propagation
Y Li, JM Hernández-Lobato, RE Turner
Advances in Neural Information Processing Systems, 2323-2331, 2015
1082015
Gradient Estimators for Implicit Models
Y Li, RE Turner
arXiv preprint arXiv:1705.07107, 2017
582017
Are generative classifiers more robust to adversarial attacks?
Y Li, J Bradshaw, Y Sharma
International Conference on Machine Learning, 3804-3814, 2019
502019
Generalization in reinforcement learning with selective noise injection and information bottleneck
M Igl, K Ciosek, Y Li, S Tschiatschek, C Zhang, S Devlin, K Hofmann
Advances in Neural Information Processing Systems, 13978-13990, 2019
472019
Approximate Inference with Amortised MCMC
Y Li, RE Turner, Q Liu
arXiv preprint arXiv:1702.08343, 2017
422017
Variational implicit processes
C Ma, Y Li, JM Hernández-Lobato
International Conference on Machine Learning, 4222-4233, 2019
322019
Meta-Learning for Stochastic Gradient MCMC
W Gong, Y Li, JM Hernández-Lobato
arXiv preprint arXiv:1806.04522, 2018
252018
On the expressiveness of approximate inference in bayesian neural networks
A Foong, D Burt, Y Li, R Turner
Advances in Neural Information Processing Systems 33, 2020
172020
Training deep Gaussian processes using stochastic expectation propagation and probabilistic backpropagation
TD Bui, JM Hernández-Lobato, Y Li, D Hernández-Lobato, RE Turner
arXiv preprint arXiv:1511.03405, 2015
172015
Variational inference with Rényi divergence
Y Li, RE Turner
stat 1050, 6, 2016
162016
On the importance of the Kullback-Leibler divergence term in variational autoencoders for text generation
V Prokhorov, E Shareghi, Y Li, MT Pilehvar, N Collier
arXiv preprint arXiv:1909.13668, 2019
152019
A Causal View on Robustness of Neural Networks
C Zhang, K Zhang, Y Li
arXiv preprint arXiv:2005.01095, 2020
142020
Wild Variational Approximations
Y Li, Q Liu
NIPS workshop on advances in approximate Bayesian inference, 2016
132016
The system can't perform the operation now. Try again later.
Articles 1–20