Elfi: Engine for likelihood-free inference J Lintusaari, H Vuollekoski, A Kangasrääsiö, K Skytén, M Järvenpää, ... Journal of Machine Learning Research 19 (16), 1-7, 2018 | 91 | 2018 |
Efficient acquisition rules for model-based approximate Bayesian computation M Järvenpää, MU Gutmann, A Pleska, A Vehtari, P Marttinen Bayesian Analysis 14 (2), 595-622, 2019 | 84 | 2019 |
Gaussian process modelling in approximate Bayesian computation to estimate horizontal gene transfer in bacteria M Järvenpää, MU Gutmann, A Vehtari, P Marttinen The Annals of Applied Statistics 12 (4), 2228-2251, 2018 | 44 | 2018 |
Parallel Gaussian process surrogate Bayesian inference with noisy likelihood evaluations M Järvenpää, MU Gutmann, A Vehtari, P Marttinen Bayesian Analysis 16 (1), 147-178, 2021 | 43 | 2021 |
Similar temperature sensitivity of soil mineral-associated organic carbon regardless of age K Karhu, E Hilasvuori, M Järvenpää, L Arppe, BT Christensen, H Fritze, ... Soil Biology and Biochemistry 136, 107527, 2019 | 24 | 2019 |
Data-based stochastic modeling of tree growth and structure formation I Potapov, M Järvenpää, M Åkerblom, P Raumonen, M Kaasalainen Silva Fennica 50 (1), 2015 | 16 | 2015 |
Batch simulations and uncertainty quantification in Gaussian process surrogate approximate Bayesian computation M Jarvenpaa, A Vehtari, P Marttinen Conference on Uncertainty in Artificial Intelligence, 779-788, 2020 | 15 | 2020 |
A Bayesian model of acquisition and clearance of bacterial colonization incorporating within-host variation M Järvenpää, MRA Sater, GK Lagoudas, PC Blainey, LG Miller, ... PLoS computational biology 15 (4), e1006534, 2019 | 11 | 2019 |
ELFI: Engine for likelihood-free inference A Kangasrääsiö, J Lintusaari, K Skytén, M Järvenpää, H Vuollekoski, ... NIPS 2016 Workshop on Advances in Approximate Bayesian Inference, 2016 | 9 | 2016 |
Yasso15 graphical userinterface manual A Repo, M Järvenpää, J Kollin, J Rasinmäki, J Liski | 8 | 2020 |
Bayes Forest: a data-intensive generator of morphological tree clones I Potapov, M Järvenpää, M Åkerblom, P Raumonen, M Kaasalainen GigaScience 6 (10), gix079, 2017 | 6 | 2017 |
Bayesian analysis of GUHA hypotheses R Piché, M Järvenpää, E Turunen, M Šimůnek Journal of Intelligent Information Systems 42, 47-73, 2014 | 6 | 2014 |
Bayesian hierarchical model of total variation regularisation for image deblurring M Järvenpää, R Piché arXiv preprint arXiv:1412.4384, 2014 | 4 | 2014 |
On predictive inference for intractable models via approximate Bayesian computation M Järvenpää, J Corander Statistics and Computing 33 (2), 42, 2023 | 2 | 2023 |
Approximate Bayesian inference from noisy likelihoods with Gaussian process emulated MCMC M Järvenpää, J Corander arXiv preprint arXiv:2104.03942, 2021 | 2 | 2021 |
A non-adaptive demographic mechanism for genome expansion in Streptomyces MJ Choudoir, MJ Järvenpää, P Marttinen, DH Buckley bioRxiv, 2021.01. 09.426074, 2021 | 1 | 2021 |
Gaussian Process Surrogate Methods for Sample-Efficient Approximate Bayesian Computation M Järvenpää Aalto University, 2020 | 1 | 2020 |
Batch simulations and uncertainty quantification in Gaussian process surrogate ABC M Järvenpää, A Vehtari, P Marttinen | | 2020 |
A Bayesian model of acquisition and clearance of bacterial colonization M Järvenpää, MRA Sater, GK Lagoudas, PC Blainey, LG Miller, ... arXiv preprint arXiv:1811.10958, 2018 | | 2018 |
A generator of morphological clones for plant species I Potapov, M Järvenpää, M Åkerblom, P Raumonen, M Kaasalainen bioRxiv, 108530, 2017 | | 2017 |