Follow
Damian Podareanu
Damian Podareanu
Consultant, SURF
Verified email at surf.nl
Title
Cited by
Cited by
Year
Netsquid, a network simulator for quantum information using discrete events
T Coopmans, R Knegjens, A Dahlberg, D Maier, L Nijsten, ...
Communications Physics 4 (1), 164, 2021
1542021
Event generation and statistical sampling for physics with deep generative models and a density information buffer
S Otten, S Caron, W de Swart, M van Beekveld, L Hendriks, ...
Nature communications 12 (1), 2985, 2021
1162021
Scale out for large minibatch SGD: Residual network training on ImageNet-1K with improved accuracy and reduced time to train
V Codreanu, D Podareanu, V Saletore
arXiv preprint arXiv:1711.04291, 2017
682017
Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations
N Marini, S Marchesin, S Otálora, M Wodzinski, A Caputo, ...
NPJ digital medicine 5 (1), 102, 2022
422022
Predicting atmospheric optical properties for radiative transfer computations using neural networks
MA Veerman, R Pincus, R Stoffer, CM Van Leeuwen, D Podareanu, ...
Philosophical Transactions of the Royal Society A 379 (2194), 20200095, 2021
412021
NetSquid, a discrete-event simulation platform for quantum networks
T Coopmans, R Knegjens, A Dahlberg, D Maier, L Nijsten, J Oliveira, ...
arXiv e-prints, arXiv: 2010.12535, 2020
402020
Multi_scale_tools: a python library to exploit multi-scale whole slide images
N Marini, S Otálora, D Podareanu, M van Rijthoven, J van der Laak, ...
Frontiers in Computer Science 3, 684521, 2021
212021
Development of a large-eddy simulation subgrid model based on artificial neural networks: a case study of turbulent channel flow
R Stoffer, CM Van Leeuwen, D Podareanu, V Codreanu, MA Veerman, ...
Geoscientific Model Development 14 (6), 3769-3788, 2021
182021
Best practice guide-deep learning
D Podareanu, V Codreanu, S Aigner, C Leeuwen, V Weinberg
Partnership for Advanced Computing in Europe (PRACE), Tech. Rep 2, 2019
122019
Event generation and statistical sampling for physics with deep generative models and a density information buffer (2019)
S Otten, S Caron, W de Swart, M van Beekveld, L Hendriks, ...
arXiv preprint arXiv:1901.00875, 1901
121901
Distributed training of generative adversarial networks for fast detector simulation
S Vallecorsa, F Carminati, G Khattak, D Podareanu, V Codreanu, ...
High Performance Computing: ISC High Performance 2018 International …, 2018
112018
Stainlib: a python library for augmentation and normalization of histopathology H&E images
S Otálora, N Marini, D Podareanu, R Hekster, D Tellez, J Van Der Laak, ...
BioRxiv, 2022.05. 17.492245, 2022
92022
Caption generation from histopathology whole-slide images using pre-trained transformers
BC Guevara, N Marini, S Marchesin, W Aswolinskiy, RJ Schlimbach, ...
Medical Imaging with Deep Learning, short paper track, 2023
72023
Large minibatch training on supercomputers with improved accuracy and reduced time to train
V Codreanu, D Podareanu, V Saletore
2018 IEEE/ACM Machine Learning in HPC Environments (MLHPC), 67-76, 2018
72018
Less is not more: We need rich datasets to explore
L Versluis, M Cetin, C Greeven, K Laursen, D Podareanu, V Codreanu, ...
Future Generation Computer Systems 142, 117-130, 2023
62023
Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations. NPJ Digit. Med. 5 (1), 1–18 (2022)
N Marini, S Marchesin, S Otlora, M Wodzinski, A Caputo, M Van Rijthoven, ...
5
Nature Commun. 12, 2985 (2021)
S Otten, S Caron, W de Swart, M van Beekveld, L Hendriks, ...
arXiv preprint arXiv:1901.00875, 0
5
Achieving deep learning training in less than 40 minutes on ImageNet-1K & best accuracy and training time on ImageNet-22K & Places-365 with scale-out Intel R Xeon R/Xeon PhiTM …
V Codreanu, D Podareanu, V Saletore
URL https://blog. surf. nl/en/imagenet-1k-training-on-intel-xeon-phi-in-less …, 0
5
DeepGalaxy: Deducing the properties of galaxy mergers from images using deep neural networks
MX Cai, J Bédorf, VA Saletore, V Codreanu, D Podareanu, A Chaibi, ...
2020 IEEE/ACM Fourth Workshop on Deep Learning on Supercomputers (DLS), 56-62, 2020
42020
Densifying assumed-sparse tensors: Improving memory efficiency and mpi collective performance during tensor accumulation for parallelized training of neural machine translation …
D Cavdar, V Codreanu, C Karakus, JA Lockman, D Podareanu, ...
High Performance Computing: 34th International Conference, ISC High …, 2019
42019
The system can't perform the operation now. Try again later.
Articles 1–20