Follow
Masahiro Suzuki
Masahiro Suzuki
Verified email at weblab.t.u-tokyo.ac.jp - Homepage
Title
Cited by
Cited by
Year
Joint multimodal learning with deep generative models
M Suzuki, K Nakayama, Y Matsuo
arXiv preprint arXiv:1611.01891, 2016
2302016
Generative adversarial nets from a density ratio estimation perspective
M Uehara, I Sato, M Suzuki, K Nakayama, Y Matsuo
arXiv preprint arXiv:1610.02920, 2016
952016
Neuro-serket: development of integrative cognitive system through the composition of deep probabilistic generative models
T Taniguchi, T Nakamura, M Suzuki, R Kuniyasu, K Hayashi, A Taniguchi, ...
New Generation Computing 38, 23-48, 2020
392020
A survey of multimodal deep generative models
M Suzuki, Y Matsuo
Advanced Robotics 36 (5-6), 261-278, 2022
372022
World models and predictive coding for cognitive and developmental robotics: frontiers and challenges
T Taniguchi, S Murata, M Suzuki, D Ognibene, P Lanillos, E Ugur, ...
Advanced Robotics, 1-27, 2023
252023
Neural machine translation with latent semantic of image and text
J Toyama, M Misono, M Suzuki, K Nakayama, Y Matsuo
arXiv preprint arXiv:1611.08459, 2016
232016
Transfer learning based on the observation probability of each attribute
M Suzuki, H Sato, S Oyama, M Kurihara
2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC …, 2014
202014
A whole brain probabilistic generative model: Toward realizing cognitive architectures for developmental robots
T Taniguchi, H Yamakawa, T Nagai, K Doya, M Sakagami, M Suzuki, ...
Neural Networks 150, 293-312, 2022
162022
Uvton: Uv mapping to consider the 3d structure of a human in image-based virtual try-on network
S Kubo, Y Iwasawa, M Suzuki, Y Matsuo
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
112019
Image classification by transfer learning based on the predictive ability of each attribute
M Suzuki, H Sato, S Oyama, M Kurihara
Proceedings of the International MultiConference of Engineers and Computer …, 2014
92014
Improving bi-directional generation between different modalities with variational autoencoders
M Suzuki, K Nakayama, Y Matsuo
arXiv preprint arXiv:1801.08702, 2018
72018
Monophonic sound source separation by non-negative sparse autoencoders
K Zen, M Suzuki, H Sato, S Oyama, M Kurihara
2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC …, 2014
62014
b-gan: Unified framework of generative adversarial networks
M Uehara, I Sato, M Suzuki, K Nakayama, Y Matsuo
42016
Pixyz: a Python library for developing deep generative models
M Suzuki, T Kaneko, Y Matsuo
Advanced Robotics 37 (19), 1221-1236, 2023
3*2023
Semi-supervised multimodal learning with deep generative models
M Suzuki, Y Matsuo
32018
異なるモダリティ間の双方向生成のための深層生成モデル
鈴木雅大, 松尾豊
情報処理学会論文誌 59 (3), 859-873, 2018
32018
深層ニューラルネットワークの中間層出力を利用した半教師あり分布外検知
岡本弘野, 鈴木雅大, 松尾豊
情報処理学会論文誌 62 (4), 1142-1151, 2021
22021
Dual space learning with variational autoencoders
H Okamoto, M Suzuki, I Higuchi, S Ohsawa, Y Matsuo
22019
服の領域を考慮した写真上の人物の自動着せ替えに関する研究
久保静真, 岩澤有祐, 鈴木雅大, 松尾豊
情報処理学会論文誌 60 (3), 870-879, 2019
22019
Learning shared manifold representation of images and attributes for generalized zero-shot learning
M Suzuki, Y Iwasawa, Y Matsuo
22018
The system can't perform the operation now. Try again later.
Articles 1–20