Language models are few-shot learners TB Brown arXiv preprint arXiv:2005.14165, 2020 | 32436 | 2020 |
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ... Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford …, 2020 | 8030 | 2020 |
Gpt-4 technical report J Achiam, S Adler, S Agarwal, L Ahmad, I Akkaya, FL Aleman, D Almeida, ... arXiv preprint arXiv:2303.08774, 2023 | 3852 | 2023 |
Evaluating large language models trained on code M Chen, J Tworek, H Jun, Q Yuan, HPDO Pinto, J Kaplan, H Edwards, ... arXiv preprint arXiv:2107.03374, 2021 | 2879 | 2021 |
Scaling laws for autoregressive generative modeling T Henighan, J Kaplan, M Katz, M Chen, C Hesse, J Jackson, H Jun, ... arXiv preprint arXiv:2010.14701, 2020 | 309 | 2020 |
ChatGPT: Optimizing language models for dialogue J Schulman, B Zoph, C Kim, J Hilton, J Menick, J Weng, JFC Uribe, ... OpenAI blog 2 (4), 2022 | 239 | 2022 |
Language Models are Few-Shot Learners. 2020. doi: 10.48550 TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ... arxiv, 5-7, 2005 | 198 | 2005 |
& Amodei, D.(2020) TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ... Language models are few-shot learners, 2005 | 101 | 2005 |
Language models are few-shot learners (arXiv: 2005.14165). arXiv TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ... | 98 | 2005 |
Tensor programs v: Tuning large neural networks via zero-shot hyperparameter transfer G Yang, EJ Hu, I Babuschkin, S Sidor, X Liu, D Farhi, N Ryder, J Pachocki, ... arXiv preprint arXiv:2203.03466, 2022 | 92 | 2022 |
Tuning large neural networks via zero-shot hyperparameter transfer G Yang, E Hu, I Babuschkin, S Sidor, X Liu, D Farhi, N Ryder, J Pachocki, ... Advances in Neural Information Processing Systems 34, 17084-17097, 2021 | 85 | 2021 |
Language models are few-shot learners B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, ... arXiv preprint arXiv:2005.14165 1, 2020 | 82 | 2020 |
Evaluating large language models trained on code. arXiv 2021 M Chen, J Tworek, H Jun, Q Yuan, HPO Pinto, J Kaplan, H Edwards, ... arXiv preprint arXiv:2107.03374 10, 2021 | 44 | 2021 |
Introducing chatgpt J Schulman, B Zoph, C Kim, J Hilton, J Menick, J Weng, JFC Uribe, ... OpenAI Blog, 2022 | 40 | 2022 |
The geometry of rank decompositions of matrix multiplication II: 3× 3 matrices G Ballard, C Ikenmeyer, JM Landsberg, N Ryder Journal of Pure and Applied Algebra 223 (8), 3205-3224, 2019 | 27 | 2019 |
ChatGPT: Optimizing Language Models for Dialogue.(2022) J Schulman, B Zoph, JHC Kim, J Menick, J Weng, JFC Uribe, L Fedus, ... OpenAI. com https://openai. com/blog/chatgpt, 2022 | 12 | 2022 |
On the further structure of the finite free convolutions J Leake, N Ryder arXiv preprint arXiv:1811.06382, 2018 | 10 | 2018 |
Real stability testing P Raghavendra, N Ryder, N Srivastava arXiv preprint arXiv:1610.00209, 2016 | 10 | 2016 |
Exponential lower bounds on spectrahedral representations of hyperbolicity cones P Raghavendra, N Ryder, N Srivastava, B Weitz Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete …, 2019 | 9 | 2019 |
Generalizations of the matching polynomial to the multivariate independence polynomial JD Leake, NR Ryder Algebraic Combinatorics 2 (5), 781-802, 2019 | 8 | 2019 |