Martin Schiegg
Martin Schiegg
Research Scientist, Bosch Center for AI
Verified email at bosch.com - Homepage
Title
Cited by
Cited by
Year
Ilastik: interactive machine learning for (bio) image analysis
S Berg, D Kutra, T Kroeger, CN Straehle, BX Kausler, C Haubold, ...
Nature Methods 16 (12), 1226-1232, 2019
3172019
Graphical model for joint segmentation and tracking of multiple dividing cells
M Schiegg, P Hanslovsky, C Haubold, U Koethe, L Hufnagel, ...
Bioinformatics 31 (6), 948-956, 2015
862015
Conservation tracking
M Schiegg, P Hanslovsky, BX Kausler, L Hufnagel, FA Hamprecht
Proceedings of the IEEE International Conference on Computer Vision, 2928-2935, 2013
722013
Probabilistic recurrent state-space models
A Doerr, C Daniel, M Schiegg, NT Duy, S Schaal, M Toussaint, ...
International Conference on Machine Learning, 1280-1289, 2018
672018
A discrete chain graph model for 3d+ t cell tracking with high misdetection robustness
BX Kausler, M Schiegg, B Andres, M Lindner, U Koethe, H Leitte, ...
European Conference on Computer Vision, 144-157, 2012
512012
Segmenting and Tracking Multiple Dividing Targets Using ilastik
C Haubold, M Schiegg, A Kreshuk, S Berg, U Koethe, FA Hamprecht
Focus on bio-image informatics, 199-229, 2016
402016
Tracking indistinguishable translucent objects over time using weakly supervised structured learning
L Fiaschi, F Diego, K Gregor, M Schiegg, U Koethe, M Zlatic, ...
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2014
272014
Active structured learning for cell tracking: algorithm, framework, and usability
X Lou, M Schiegg, FA Hamprecht
IEEE transactions on medical imaging 33 (4), 849-860, 2014
232014
Time series anomaly detection based on shapelet learning
L Beggel, BX Kausler, M Schiegg, M Pfeiffer, B Bischl
Computational Statistics 34 (3), 945-976, 2019
162019
Differentiable likelihoods for fast inversion of’likelihood-free’dynamical systems
H Kersting, N Krämer, M Schiegg, C Daniel, M Tiemann, P Hennig
International Conference on Machine Learning, 5198-5208, 2020
112020
Relational generalized few-shot learning
X Shi, L Salewski, M Schiegg, Z Akata, M Welling
arXiv preprint arXiv:1907.09557, 2019
102019
Markov logic mixtures of Gaussian processes: Towards machines reading regression data
M Schiegg, M Neumann, K Kersting
Artificial Intelligence and Statistics, 1002-1011, 2012
82012
Proof-reading guidance in cell tracking by sampling from tracking-by-assignment models
M Schiegg, B Heuer, C Haubold, S Wolf, U Koethe, FA Hamprecht
2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 394-398, 2015
32015
Learning diverse models: The coulomb structured support vector machine
M Schiegg, F Diego, FA Hamprecht
European Conference on Computer Vision, 585-599, 2016
22016
METHOD FOR ASCERTAINING A NOx CONCENTRATION AND A NH3 SLIP DOWNSTREAM FROM AN SCR CATALYTIC CONVERTER
C Daniel, E Klenske, H Markert, M Schiegg, S Angermaier, V Imhof
US Patent App. 16/651,104, 2020
12020
Model calculation unit and control unit for calculating a multilayer perceptron model with feedforward and feedback
A Guntoro, H Markert, M Schiegg
US Patent App. 16/330,625, 2020
12020
Multi-target tracking with probabilistic graphical models
MJ Schiegg
12015
Model calculating unit and control unit for calculating a neural layer of a multilayer perceptron model
A Guntoro, E Kloppenburg, H Markert, M Schiegg
US Patent App. 16/466,814, 2021
2021
Model calculation unit and control unit for calculating a partial derivative of an rbf model
A Guntoro, H Markert, M Schiegg
US Patent App. 16/329,922, 2021
2021
Method for ascertaining a time characteristic of a measured variable, prediction system, actuator control system, method for training the actuator control system, training …
C Daniel, S Trimpe, M Schiegg, A Doerr
US Patent 11,093,863, 2021
2021
The system can't perform the operation now. Try again later.
Articles 1–20