Follow
Chelsea Finn
Chelsea Finn
Verified email at cs.stanford.edu - Homepage
Title
Cited by
Cited by
Year
Model-agnostic meta-learning for fast adaptation of deep networks
C Finn, P Abbeel, S Levine
International Conference on Machine Learning (ICML), 1126-1135, 2017
76242017
End-to-end training of deep visuomotor policies
S Levine, C Finn, T Darrell, P Abbeel
Journal of Machine Learning Research 17 (1), 1334-1373, 2016
31422016
Unsupervised learning for physical interaction through video prediction
C Finn, I Goodfellow, S Levine
Advances in neural information processing systems 29, 2016
9812016
Guided cost learning: Deep inverse optimal control via policy optimization
C Finn, S Levine, P Abbeel
International Conference on Machine Learning (ICML), 49-58, 2016
8332016
Deep visual foresight for planning robot motion
C Finn, S Levine
2017 IEEE International Conference on Robotics and Automation (ICRA), 2786-2793, 2017
6542017
Probabilistic model-agnostic meta-learning
C Finn, K Xu, S Levine
Neural Information Processing Systems (NeurIPS), 2018
5962018
Deep spatial autoencoders for visuomotor learning
C Finn, XY Tan, Y Duan, T Darrell, S Levine, P Abbeel
2016 IEEE International Conference on Robotics and Automation (ICRA), 512-519, 2016
575*2016
Model-based reinforcement learning for atari
L Kaiser, M Babaeizadeh, P Milos, B Osinski, RH Campbell, ...
International Conference on Learning Representations (ICLR), 2020
5702020
Meta-learning with implicit gradients
A Rajeswaran, C Finn, S Kakade, S Levine
Neural Information Processing Systems (NeurIPS), 2019
4832019
Wilds: A benchmark of in-the-wild distribution shifts
PW Koh, S Sagawa, H Marklund, SM Xie, M Zhang, A Balsubramani, ...
International Conference on Machine Learning (ICML), 5637-5664, 2021
4632021
One-shot visual imitation learning via meta-learning
C Finn, T Yu, T Zhang, P Abbeel, S Levine
Conference on Robot Learning (CoRL), 2017
4592017
Learning to adapt in dynamic, real-world environments through meta-reinforcement learning
A Nagabandi, I Clavera, S Liu, RS Fearing, P Abbeel, S Levine, C Finn
International Conference on Learning Representations (ICLR), 2019
458*2019
Recasting gradient-based meta-learning as hierarchical bayes
E Grant, C Finn, S Levine, T Darrell, T Griffiths
International Conference on Learning Representations (ICLR), 2018
4522018
On the opportunities and risks of foundation models
R Bommasani, DA Hudson, E Adeli, R Altman, S Arora, S von Arx, ...
arXiv preprint arXiv:2108.07258, 2021
4452021
Stochastic variational video prediction
M Babaeizadeh, C Finn, D Erhan, RH Campbell, S Levine
International Conference on Learning Representations (ICLR), 2017
4352017
Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning
T Yu, D Quillen, Z He, R Julian, K Hausman, C Finn, S Levine
Conference on Robot Learning (CoRL), 2019
4172019
Efficient off-policy meta-reinforcement learning via probabilistic context variables
K Rakelly, A Zhou, D Quillen, C Finn, S Levine
International Conference on Machine Learning (ICML), 2019
3972019
Stochastic adversarial video prediction
AX Lee, R Zhang, F Ebert, P Abbeel, C Finn, S Levine
arXiv preprint arXiv:1804.01523, 2018
3662018
Gradient surgery for multi-task learning
T Yu, S Kumar, A Gupta, S Levine, K Hausman, C Finn
Neural Information Processing Systems (NeurIPS), 2020
3252020
Online meta-learning
C Finn, A Rajeswaran, S Kakade, S Levine
International Conference on Machine Learning (ICML), 2019
3252019
The system can't perform the operation now. Try again later.
Articles 1–20