3-coloring in time 0 (1.3446/sup n/): a no-MIS algorithm R Beigel, D Eppstein Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium …, 1995 | 261* | 1995 |

On ACC (circuit complexity) R Beigel, J Tarui Foundations of Computer Science, 1991. Proceedings., 32nd Annual Symposium …, 1991 | 245* | 1991 |

OC1: A randomized algorithm for building oblique decision trees SK Murthy, S Kasif, S Salzberg, R Beigel Proceedings of AAAI 93, 322-327, 1993 | 236* | 1993 |

The expressive power of voting polynomials J Aspnes, R Beigel, M Furst, S Rudich Combinatorica 14 (2), 135-148, 1994 | 231 | 1994 |

PP is closed under intersection R Beigel, N Reingold, D Spielman Journal of Computer and System Sciences 50 (2), 191-202, 1995 | 220 | 1995 |

The polynomial method in circuit complexity R Beigel Structure in Complexity Theory Conference, 1993., Proceedings of the Eighth …, 1993 | 192 | 1993 |

Bounded queries to SAT and the Boolean hierarchy R Beigel Theoretical Computer Science 84 (2), 199-223, 1991 | 179 | 1991 |

3-coloring in time O (1.3289 n) R Beigel, D Eppstein Journal of Algorithms 54 (2), 168-204, 2005 | 161 | 2005 |

Finding maximum independent sets in sparse and general graphs R Beigel SODA 99, 856-857, 1999 | 137 | 1999 |

Representing Boolean functions as polynomials modulo composite numbers DA Mix Barrington, R Beigel, S Rudich Proceedings of the twenty-fourth annual ACM symposium on Theory of computing …, 1992 | 135 | 1992 |

Some connections between bounded query classes and nonuniform complexity A Amir, R Beigel, WI Gasarch Structure in Complexity Theory Conference, 1990, Proceedings., Fifth Annual …, 1990 | 133 | 1990 |

Approximable sets R Beigel, M Kummer, F Stephan Information and Computation 120 (2), 304-314, 1995 | 127 | 1995 |

Perceptrons, PP, and the polynomial hierarchy R Beigel Structure in Complexity Theory Conference, 1992., Proceedings of the Seventh …, 1992 | 116 | 1992 |

Query-limited reducibilities R Beigel stanford university, 1988 | 112 | 1988 |

Representing Boolean functions as polynomials modulo composite numbers DAM Barrington, R Beigel, S Rudich Computational Complexity 4 (4), 367-382, 1994 | 109 | 1994 |

Terse, superterse, and verbose sets R Beigel, WI Gasarch, J Gill, JC Owings Information and Computation 103 (1), 68-85, 1993 | 100 | 1993 |

NP-hard sets are P-superterse unless R= NP R Beigel | 93 | 1992 |

Counting classes: Thresholds, parity, mods, and fewness R Beigel, J Gill, U Hertramp STACS 90, 49-57, 1990 | 92 | 1990 |

Learning a hidden matching N Alon, R Beigel, S Kasif, S Rudich, B Sudakov SIAM Journal on Computing 33 (2), 487-501, 2004 | 88 | 2004 |

The perceptron strikes back R Beigel, N Reingold, D Spielman Structure in Complexity Theory Conference, 1991., Proceedings of the Sixth …, 1991 | 85 | 1991 |