Seuraa
Ilya Sutskever
Ilya Sutskever
Co-Founder and Chief Scientist of OpenAI
Vahvistettu sähköpostiosoite verkkotunnuksessa openai.com - Kotisivu
Nimike
Viittaukset
Viittaukset
Vuosi
Imagenet classification with deep convolutional neural networks
A Krizhevsky, I Sutskever, GE Hinton
Advances in neural information processing systems 25, 2012
156570*2012
Tensorflow: Large-scale machine learning on heterogeneous distributed systems
M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ...
arXiv preprint arXiv:1603.04467, 2016
53664*2016
Dropout: a simple way to prevent neural networks from overfitting
N Srivastava, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov
The journal of machine learning research 15 (1), 1929-1958, 2014
504752014
Distributed representations of words and phrases and their compositionality
T Mikolov, I Sutskever, K Chen, GS Corrado, J Dean
Advances in neural information processing systems 26, 2013
437422013
Sequence to sequence learning with neural networks
I Sutskever, O Vinyals, QV Le
Advances in neural information processing systems 27, 2014
259952014
Language models are few-shot learners
T Brown, B Mann, N Ryder, M Subbiah, JD Kaplan, P Dhariwal, ...
Advances in neural information processing systems 33, 1877-1901, 2020
258132020
Mastering the game of Go with deep neural networks and tree search
D Silver, A Huang, CJ Maddison, A Guez, L Sifre, G Van Den Driessche, ...
nature 529 (7587), 484-489, 2016
189002016
Intriguing properties of neural networks
C Szegedy, W Zaremba, I Sutskever, J Bruna, D Erhan, I Goodfellow, ...
arXiv preprint arXiv:1312.6199, 2013
164742013
Learning transferable visual models from natural language supervision
A Radford, JW Kim, C Hallacy, A Ramesh, G Goh, S Agarwal, G Sastry, ...
International conference on machine learning, 8748-8763, 2021
163212021
Improving neural networks by preventing co-adaptation of feature detectors
GE Hinton, N Srivastava, A Krizhevsky, I Sutskever, RR Salakhutdinov
arXiv preprint arXiv:1207.0580, 2012
111962012
Language models are unsupervised multitask learners
A Radford, J Wu, R Child, D Luan, D Amodei, I Sutskever
OpenAI blog 1 (8), 9, 2019
100032019
Improving language understanding by generative pre-training
A Radford, K Narasimhan, T Salimans, I Sutskever
93682018
Infogan: Interpretable representation learning by information maximizing generative adversarial nets
X Chen, Y Duan, R Houthooft, J Schulman, I Sutskever, P Abbeel
Advances in neural information processing systems 29, 2016
6296*2016
On the importance of initialization and momentum in deep learning
I Sutskever, J Martens, G Dahl, G Hinton
International conference on machine learning, 1139-1147, 2013
61712013
Zero-shot text-to-image generation
A Ramesh, M Pavlov, G Goh, S Gray, C Voss, A Radford, M Chen, ...
International conference on machine learning, 8821-8831, 2021
37672021
Recurrent neural network regularization
W Zaremba, I Sutskever, O Vinyals
arXiv preprint arXiv:1409.2329, 2014
36002014
An empirical exploration of recurrent network architectures
R Jozefowicz, W Zaremba, I Sutskever
International conference on machine learning, 2342-2350, 2015
23632015
Glide: Towards photorealistic image generation and editing with text-guided diffusion models
A Nichol, P Dhariwal, A Ramesh, P Shyam, P Mishkin, B McGrew, ...
arXiv preprint arXiv:2112.10741, 2021
21962021
Evaluating large language models trained on code
M Chen, J Tworek, H Jun, Q Yuan, HPO Pinto, J Kaplan, H Edwards, ...
arXiv preprint arXiv:2107.03374, 2021
21022021
Generating text with recurrent neural networks
I Sutskever, J Martens, GE Hinton
Proceedings of the 28th international conference on machine learning (ICML …, 2011
20252011
Järjestelmä ei voi suorittaa toimenpidettä nyt. Yritä myöhemmin uudelleen.
Artikkelit 1–20